January 02, 2025
Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes correspond to mathematical operations and are used widely as abstractions in optimizations of neural networks. The device placement problem aims to identify optimal allocations of those nodes to a set of (potentially heterogeneous) devices. Existing approaches rely on two types of architectures known as grouper-placer and encoder-placer, respectively. In this work, we bridge the gap between encoder-placer and grouper-placer techniques and propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into account the DAG nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and jointed, personalized graph partitioning, using an unspecified number of groups. To train the entire framework, we use reinforcement learning using the execution time of the placement as reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to 58.2% over CPU execution and by up to 60.24% compared to other commonly used baselines.
Written by
Shukai Duan
Heng Ping
Nikos Kanakaris
Xiongye Xiao
Panagiotis Kyriakis
Nesreen K. Ahmed
Peiyu Zhang
Guixiang Ma
Mihai Capota
Shahin Nazarian
Theodore L. Willke
Paul Bogdan
Publisher
NeurIPS
Research Topics
Core Machine Learning
May 14, 2025
Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick
May 14, 2025
May 14, 2025
Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King
May 14, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
December 18, 2024
Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
December 18, 2024
Our approach
Latest news
Foundational models