May 31, 2020
Human characters with a broad range of natural looking and physically realistic behaviors will enable the construction of compelling interactive experiences. In this paper, we develop a technique for learning controllers for a large set of heterogeneous behaviors. By dividing a reference library of motion into clusters of like motions, we are able to construct experts, learned controllers that can reproduce a simulated version of the motions in that cluster. These experts are then combined via a second learning phase, into a general controller with the capability to reproduce any motion in the reference library. We demonstrate the power of this approach by learning the motions produced by a motion graph constructed from eight hours of motion capture data and containing a diverse set of behaviors such as dancing (ballroom and breakdancing), Karate moves, gesturing, walking, and running.
Written by
Jungdam Won
Deepak Gopinath
Jessica Hodgins
Publisher
ACM SIGGRAPH
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
Foundational models
Our approach
Latest news
Foundational models