Research

Computer Vision

A real-time framework for detecting efficiency regressions in a globally distributed codebase

August 19, 2018

Abstract

Multiple teams at Facebook are tasked with monitoring compute and memory utilization metrics that are important for managing the efficiency of the codebase. An efficiency regression is characterized by instances where the CPU utilization or query per second (QPS) patterns of a function or endpoint experience an unexpected increase over its prior baseline. If the code changes responsible for these regressions get propagated to Facebook’s fleet of web servers, the impact of the inefficient code will get compounded over billions of executions per day, carrying potential ramifications to Facebook’s scaling efforts and the quality of the user experience. With a codebase ingesting in excess of 1,000 diffs across multiple pushes per day, it is important to have a real-time solution for detecting regressions that is not only scalable and high in recall, but also highly precise in order to avoid overrunning the remediation queue with thousands of false positives. This paper describes the end-to-end regression detection system designed and used at Facebook. The main detection algorithm is based on sequential statistics supplemented by signal processing transformations, and the performance of the algorithm was assessed with a mixture of online and offline tests across different use cases. We compare the performance of our algorithm against a simple benchmark as well as a commercial anomaly detection software solution.

https://research.fb.com/wp-content/uploads/2018/06/Master-RegressionDetection-v1.mp4

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.