CORE MACHINE LEARNING

A newcomer's guide to deep learning for inverse design in nano-photonics

January 18, 2024

Abstract

Nanophotonic devices manipulate light at sub-wavelength scales, enabling tasks such as light concentration, routing, and filtering. Designing these devices is a challenging task. Traditionally, solving this problem has relied on computationally expensive, iterative methods. In recent years, deep learning techniques have emerged as promising tools for tackling the inverse design of nanophotonic devices. While several review articles have provided an overview of the progress in this rapidly evolving field, there is a need for a comprehensive tutorial that specifically targets newcomers without prior experience in deep learning. Our goal is to address this gap and provide practical guidance for applying deep learning to individual scientific problems. We introduce the fundamental concepts of deep learning and critically discuss the potential benefits it offers for various inverse design problems in nanophotonics. We present a suggested workflow and detailed, practical design guidelines to help newcomers navigate the challenges they may encounter. By following our guide, newcomers can avoid frustrating roadblocks commonly experienced when venturing into deep learning for the first time. In a second part, we explore different iterative and direct deep learning-based techniques for inverse design, and evaluate their respective advantages and limitations. To enhance understanding and facilitate implementation, we supplement the manuscript with detailed Python notebook examples, illustrating each step of the discussed processes. While our tutorial primarily focuses on researchers in (nano-)photonics, it is also relevant for those working with deep learning in other research domains. We aim at providing a solid starting point to empower researchers to leverage the potential of deep learning in their scientific pursuits.

Download the Paper

AUTHORS

Written by

Olivier Teytaud

Abdourahman Khaireh Walieh

Antoine Moreau

Pauline Bennet

Peter Wiecha

Publisher

nano-photonics

Research Topics

Core Machine Learning

Related Publications

May 07, 2024

CORE MACHINE LEARNING

ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift

Hwanwoo Kim, Xin Zhang, Jiwei Zhao, Qinglong Tian

May 07, 2024

April 04, 2024

CORE MACHINE LEARNING

DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning

Jonathan Lebensold, Maziar Sanjabi, Pietro Astolfi, Adriana Romero Soriano, Kamalika Chaudhuri, Mike Rabbat, Chuan Guo

April 04, 2024

March 28, 2024

THEORY

CORE MACHINE LEARNING

On the Identifiability of Quantized Factors

Vitoria Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent

March 28, 2024

March 13, 2024

CORE MACHINE LEARNING

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, Yuandong Tian

March 13, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.