RESEARCH

COMPUTER VISION

A Multigrid Method for Efficiently Training Video Models

June 16, 2020

Abstract

Training competitive deep video models is an order of magnitude slower than training their counterpart image models. Slow training causes long research cycles, which hinders progress in video understanding research. Following standard practice for training image models, video model training has used a fixed mini-batch shape: a specific number of clips, frames, and spatial size. However, what is the optimal shape? High resolution models perform well, but train slowly. Low resolution models train faster, but are less accurate. Inspired by multigrid methods in numerical optimization, we propose to use variable mini-batch shapes with different spatial-temporal resolutions that are varied according to a schedule. The different shapes arise from resampling the training data on multiple sampling grids. Training is accelerated by scaling up the mini-batch size and learning rate when shrinking the other dimensions. We empirically demonstrate a general and robust grid schedule that yields a significant out-of-the-box training speedup without a loss in accuracy for different models (I3D, non-local, SlowFast), datasets (Kinetics, Something-Something, Charades), and training settings (with and without pre-training, 128 GPUs or 1 GPU). As an illustrative example, the proposed multigrid method trains a ResNet-50 SlowFast network 4.5x faster (wall-clock time, same hardware) while also improving accuracy (+0.8% absolute) on Kinetics-400 compared to baseline training. Code is available online at https://github.com/facebookresearch/SlowFast/blob/master/projects/multigrid.

Download the Paper

AUTHORS

Written by

Ross Girshick

Chao-Yuan Wu

Christoph Feichtenhofer

Kaiming He

Philipp Krähenbühl

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

March 20, 2024

COMPUTER VISION

SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

Armen Avetisyan, Chris Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Julian Engel, Edward Miller, Richard Newcombe, Vasileios Balntas

March 20, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.