November 30, 2018
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance, it is crucial to guarantee the safety of an agent during training as well as deployment (e.g., a robot should avoid taking actions - exploratory or not - which irrevocably harm its hard- ware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision processes (CMDPs), an extension of the standard Markov decision processes (MDPs) augmented with constraints on expected cumulative costs. Our approach hinges on a novel Lyapunov method. We define and present a method for constructing Lyapunov functions, which provide an effective way to guarantee the global safety of a behavior policy during training via a set of local linear constraints. Leveraging these theoretical underpinnings, we show how to use the Lyapunov approach to systematically transform dynamic programming (DP) and RL algorithms into their safe counterparts. To illustrate their effectiveness, we evaluate these algorithms in several CMDP planning and decision-making tasks on a safety benchmark domain. Our results show that our proposed method significantly outperforms existing baselines in balancing constraint satisfaction and performance.
Written by
Mohammad Ghavamzadeh
Edgar Duenez-Guzman
Ofir Nachum
Yinlam Chow
Publisher
NIPS
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
March 24, 2025
Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi
March 24, 2025
Foundational models
Our approach
Latest news
Foundational models