November 24, 2020
Safety is crucial for deploying robots in the real world. One way of reasoning about safety of robots is by building safe sets through Hamilton-Jacobi (HJ) reachability. However, safe sets are often computed offline, assuming perfect knowledge of the dynamics, due to high compute time. In the presence of uncertainty, the safe set computed offline becomes inaccurate online, potentially leading to dangerous situations on the robot. We propose a novel framework to learn a safe control policy in simulation, and use it to generate online safe sets under uncertain dynamics. We start with a conservative safe set and update it online as we gather more information about the robot dynamics. We also show an application of our framework to a model-based reinforcement learning problem, proposing a safe model-based RL setup. Our framework enables robots to simultaneously learn about their dynamics, accomplish tasks, and update their safe sets. It also generalizes to complex high-dimensional dynamical systems, like 3-link manipulators and quadrotors, and reliably avoids obstacles, while achieving a task, even in the presence of unmodeled noise.
May 14, 2025
Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick
May 14, 2025
May 13, 2025
Marlène Careil, Yohann Benchetrit, Jean-Rémi King
May 13, 2025
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
Our approach
Latest news
Foundational models