ROBOTICS

COMPUTER VISION

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

November 08, 2021

Abstract

Specifying tasks with videos is a powerful technique towards acquiring novel and general robot skills. However, reasoning over mechanics and dexterous interactions can make it challenging to scale learning contact-rich manipulation. In this work, we focus on the problem of visual non-prehensile planar manipulation: given a video of an object in planar motion, find contact-aware robot actions that reproduce the same object motion. We propose a novel architecture, Differentiable Learning for Manipulation (DLM), that combines video decoding neural models with priors from contact mechanics by leveraging differentiable optimization and finite difference based simulation. Through extensive simulated experiments, we investigate the interplay between traditional model-based techniques and modern deep learning approaches. We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions. https://github.com/baceituno/dlm.

Download the Paper

AUTHORS

Written by

Bernardo Aceituno

Alberto Rodriguez

Shubham Tulsiani

Abhinav Gupta

Mustafa Mukadam

Publisher

CoRL

Research Topics

Robotics

Computer Vision

Related Publications

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, David Novotny

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D Gen

Raphael Bensadoun, Tom Monnier, Yanir Kleiman, Filippos Kokkinos, Yawar Siddiqui, Mahendra Kariya, Omri Harosh, Roman Shapovalov, Emilien Garreau, Animesh Karnewar, Ang Cao, Idan Azuri, Iurii Makarov, Eric-Tuan Le, Antoine Toisoul, David Novotny, Oran Gafni, Natalia Neverova, Andrea Vedaldi

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects

Raphael Bensadoun, Yanir Kleiman, Idan Azuri, Omri Harosh, Andrea Vedaldi, Natalia Neverova, Oran Gafni

July 02, 2024

June 20, 2024

COMPUTER VISION

ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization

Weiyao Wang, Pierre Gleize, Hao Tang, Xingyu Chen, Kevin Liang, Matt Feiszli

June 20, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.